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Abstract—Obtaining a controlled invariant set is crucial for
safety-critical control with control barrier functions (CBFs)
but is non-trivial for complex nonlinear systems and con-
straints. Backup control barrier functions allow such sets to
be constructed online in a computationally tractable manner
by examining the evolution (or flow) of the system under a
known backup control law. However, for systems with un-
modeled disturbances, this flow cannot be directly computed,
making the current methods inadequate for assuring safety
in these scenarios. To address this gap, we leverage bounds
on the nominal and disturbed flow to compute a forward
invariant set online by ensuring safety of an expanding norm
ball tube centered around the nominal system evolution. We
prove that this set results in robust control constraints which
guarantee safety of the disturbed system via our Disturbance-
Robust Backup Control Barrier Function (DR-bCBF) solution.
The efficacy of the proposed framework is demonstrated in
simulation, applied to a double integrator problem and a rigid
body spacecraft rotation problem with rate constraints.

I. INTRODUCTION

Control barrier functions (CBFs) [1], are a popular ap-
proach to assuring safety of autonomous systems by encoding
safety into existing controllers and providing sufficient condi-
tions for forward invariance of safe sets. However, obtaining
safe sets for which every state has a safe control action (a.k.a.
controlled invariant sets) is difficult for high-dimensional
systems, especially when considering input bounds. Addi-
tionally, dynamics models are seldom perfect. In this letter
we seek to solve both of these problems simultaneously.

To address the problem of controlled invariance, we adapt
the backup set method [2]–[4] based on online backward
reachability. This method establishes a controlled invariant
safe set implicitly using the flow of the system under a
prescribed backup control law. This approach is computation-
ally tractable even for complex systems. For affine nonlinear
systems, this technique generates linear control constraints
which can be used to efficiently solve for point-wise optimal
control signals for an arbitrary primary controller.

The second problem we address is that of model uncer-
tainty, which has been studied extensively in the CBF litera-
ture. Robust methods [5]–[8] typically rely on accounting
for worst-case disturbances through an upper disturbance
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Fig. 1. Depiction of the proposed disturbance-robust safety-critical control
framework. CI represents a forward invariant subset of an unknown con-
trolled invariant set CD and guarantees safety of the disturbed system.

bound, and these methods can be made less conservative
via disturbance estimation [9]. The notion of input-to-state
safety, defined first in [10] and extended for CBFs in [11],
provides a technique for handling input disturbances and has
been successfully applied in multiple scenarios [12], [13].
Adaptive CBF methods have been shown to assure safety in
the presence of parametric dynamics uncertainty [14], [15]
and a robust adaptive CBF extension can reduce conservatism
and closed-loop chattering [16]. Learning [17], [18] and data-
driven [19]–[21] approaches have also been developed to
account for uncertainty in dynamics, state, or both. Lastly, for
mixed-monotone systems their decomposable structure can
be exploited to produce robustly forward invariant sets [22].
While these approaches present viable solutions to addressing
model uncertainty, they assume that a controlled invariant
safe set can be found explicitly—a strong assumption for
many systems and safety constraints. Works [23] and [24] do
not make this assumption, but the former is specific to mixed-
monotone systems, and the latter assumes perfect dynamics
knowledge and bounded measurement error.

The main contribution of this work is a novel approach
to address controlled invariance and dynamics disturbances
simultaneously through the formulation of disturbance-robust
backup CBFs. Unlike existing works, a controlled invariant
set describing safety is not assumed to be known a priori,
but is instead constructed online. We first derive forward
invariance conditions for a subset inside a controlled invariant
set of the disturbed system (displayed in Figure 1). Then we
robustify these conditions and integrate them with existing
controllers via a quadratic program. The proposed framework
guarantees safety for a broad class of nonlinear systems with
limited control authority even in the presence of unknown,
bounded disturbances. We demonstrate the effectiveness of
the approach using two numerical simulations: an illustrative
double integrator system and a spacecraft rotation example.



II. PRELIMINARIES

A. Control Barrier Functions

Consider a nonlinear control affine system of the form

_x = f(x) + g(x)u; x 2 X � Rn; u 2 U � Rm; (1)

where f : X ! Rn and g : X ! Rn�m are Lipschitz con-
tinuous functions. It is assumed that U is an m-dimensional
convex polytope. For an initial condition x(0) = x0 2 X
if u is given by a locally Lipschitz feedback controller
k : X ! U , u = k(x), the closed-loop system (1) has a
unique solution �n(t;x0) over an interval of existence.

In the context of this work, safety is defined by member-
ship to set CS. Safe controllers are ones that render this safe
set forward invariant. A set C � Rn is forward invariant
along (1) if x0 2 C =) �n(t;x0) 2 C; for all t > 0.
Now, consider the safe set CS as the 0-superlevel set of
a continuously differentiable function h : X ! R with
CS , fx 2 X : h(x) � 0g, where the gradient of h along the
boundary of CS remains nonzero. A function h : X ! R is
a CBF [1] for (1) on CS if there exists a class-K1 function1

� such that for all x 2 CS
sup
u2U

_h(x;u) , rh(x)f(x)| {z }
Lfh(x)

+rh(x)g(x)| {z }
Lgh(x)

u � ��(h(x));

where L(�)h is the Lie derivative of h along function (�).

Theorem 1 ( [1]). If h is a CBF for (1) on CS, then any
locally Lipschitz controller k : X ! U , u = k(x) satisfying

Lfh(x) + Lgh(x)u � ��(h(x)) (2)

for all x 2 CS renders the set CS forward invariant.

For an arbitrary primary controller, up 2 U , it is possible
to ensure the safety of (1) by solving the following point-wise
optimization problem for the safe control, usafe:

usafe = argmin
u2U

1

2
kup � uk2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u � ��(h(x)):

A key challenge is obtaining an explicit representation of
such a function h where a safe control signal satisfying (2)
can always be found. Depending on the safe set this may
be difficult or impossible, especially for high dimensional
systems. This therefore motivates the use of an extension of
CBFs known as backup CBFs.

B. Implicitly Defined Controlled Invariant Sets

First introduced in [2] and expanded upon in [3], the
backup CBF approach relies on obtaining an implicitly
defined controlled invariant set. A set C � Rn is controlled
invariant if there exists a controller k : X ! U , u = k(x)
which renders C forward invariant for (1).

1� : R≥0 → R≥0 is a class-K∞ function if it is continuous, �(0) = 0
and limx→∞�(x) = ∞.

To construct an implicit controlled invariant set, first
assume that we have defined a set CS describing our state
constraints, which is not necessarily controlled invariant.
Now suppose that there exists a set within CS which we call
a backup set, CB, such that CB � CS. This set is defined
similar to CS with a continuously differentiable function hb,
it is known to be controlled invariant, and it is made forward
invariant by a backup control law defined by ub : X ! U .
The closed-loop system under ub is denoted as

fcl(x) , f(x) + g(x)ub(x): (3)

It is assumed that for any x 2 X there exists a unique
solution �nb : [0; T ]�X ! X which satisfies:

_�nb(�;x) = fcl(�
n
b(�;x)); �nb(0;x) = x: (4)

The solution is the flow of the system over the interval [0; T ]
for T 2 R>0 starting at state x under the backup control
law ub. To obtain an implicitly defined controlled invariant
set, CBI, satisfying CB � CBI � CS, one must ensure that the
trajectory of the system under ub(x) remains in CS over a
finite time horizon, and that the final point in the trajectory
lies within the backup set CB. Therefore CBI is defined as

CBI ,

�
x 2 X

���� h(�nb(�;x)) � 0;8� 2 [0; T ];
hb(�nb(T;x)) � 0

�
: (5)

The sufficient condition for forward invariance of CBI, and
thus safety with respect to CS, is then

rh(�nb(�;x))�n
b(�;x) _x � ��(h(�nb(�;x))); (6a)

rhb(�nb(T;x))�n
b(T;x) _x � ��b(hb(�nb(T;x))); (6b)

for all � 2 [0; T ] and class-K1 functions � and �b. Here,
_x = f(x) + g(x)u and �n

b(�;x) , @�nb(�;x)=@x is the
sensitivity matrix, or state-transition matrix (STM), which
captures the sensitivity of the flow to perturbations in the
initial condition x. The STM is the solution to

_�
n

b(�;x) = Fcl(�
n
b(�;x))�n

b(�;x); �n
b(0;x) = I; (7)

where Fcl is the Jacobian of the closed-loop backup dynamics
(3) evaluated at �nb(�;x) and I is the n�n identity matrix.

Because the inequality in (6a) represents an infinite number
of constraints, in practice these are discretized and enforced
at discrete times along the flow. To ensure safety between
sample points, (6a) is tightened via a constant "� [4, Thm. 3]:

"� �
�

2
Lh sup

x2CS

kfcl(x)k ; (8)

where � 2 R>0 is a discretization time step satisfying
T=� 2 N, Lh 2 R>0 is the Lipschitz constant of h with
respect to the Euclidean norm and supx2CS

kfcl(x)k is the
maximal velocity of the backup vector field.

As in (CBF-QP), the safety of (1) can be enforced for
a primary controller, up 2 U , by solving an optimization
problem for the safe control with constraints (6), where the
right-hand side of (6a) is replaced by ��(h(�nb(�;x))�"�).



III. D ISTURBANCE ROBUSTNESS

While the standard backup set method reviewed in Sec-
tion II-B can guarantee safety for a system in which the
dynamics are perfectly known, in practice there are always
unmodeled parameters or external disturbances which perturb
the dynamics. Therefore, it is desirable to leverage the ad-
vantages offered by the backup CBF approach, for dynamics
with process disturbances. As such, consider the system

_x = f (x ) + g(x )u + dx ; (9)

where dx 2 D x � Rn is an unknown additive process dis-
turbance and there exists a constant� 2 R> 0 such that
kdx k � � . For an initial conditionx (0) = x 0 2 X and a
locally Lipschitz controlleru = k(x ), if dx is piecewise
continuous in time, the closed-loop system (9) has a unique
solution � d(t; x 0) over an interval of existence.

We assume that a backup control lawu b can be obtained
which renders a backup setCB inside CS robustly forward
invariant. This is made more precise below.

Assumption 1. The backup controlleru b renders the backup
set CB forward invariant along(9) for any disturbancedx

which satis�eskdx k � � .

Backup sets are often de�ned by a level set of a quadratic
Lyapunov function based on the linearized dynamics about a
stabilizable equilibrium point [3], [25], and a simple feedback
controller such as a linear quadratic regulator can be used
to render this set forward invariant. Techniques to robustify
such quadratic Lyapunov functions have been studied in
the literature [5], [26, Ch. 13.1], [27, Ch. 3]. While this
robusti�cation may result in a smaller backup set, this set
is expanded to generate a larger controlled invariant set.

Next we de�ne two separate �ows: the nominal and the
disturbed backup �ow. The nominal backup �ow� n

b (�; x )
satis�es (4) under the robust control lawu b , while the
disturbed backup �ow, denoted� d

b (�; x ), is the solution to

_� d
b (�; x ) = f cl (�

d
b (�; x )) + dx ; � d

b (0; x ) = x : (10)

Again, it is assumed that for anyx 2 X there exists a unique
solution � d

b : [0; T] � X ! X to (10). ConsiderCD � C S

CD ,
�

x 2 X

�
�
�
�

h(� d
b (�; x )) � 0; 8� 2 [0; T];

hb (� d
b (T; x )) � 0

�
: (11)

We are interested in forward invariance conditions forCD , but
since the disturbance is unknown, we will instead derive for-
ward invariance conditions for a set which over-approximates
the disturbed �ow. Consider a new set,CI , de�ned by

CI ,
�

x 2 X

�
�
�
�

h(� n
b (�; x )) � � � ; 8� 2 [0; T];

hb (� n
b (T; x )) � � b

�
: (12)

The set is entirely governed by the nominal trajectory and
additional tightening terms� � and� b . For judiciously chosen
values of� � and � b , we show thatCI is a subset ofCD .

Lemma 1. Let L h and L hb be the Lipschitz constants ofh
andhb , respectively, and let� max (� ) be a norm bound on the
deviation between� n

b (�; x ) and � d
b (�; x ) at time� 2 [0; T]:



 � n

b (�; x ) � � d
b (�; x )



 � � max (� ); (13)

for all x 2 CS. If � � � L h � max (� ) holds for all � 2 [0; T]
and � b � L hb � max (T) also holds, thenCI � C D .

Proof. Consider any statex 2 CI . Membership toCI implies
that h(� n

b (�; x )) � � � � L h � max (� ). Hence it follows that

h(� d
b (�; x )) = h(� n

b (�; x )) �
�
h(� n

b (�; x )) � h(� d
b (�; x ))

�

� L h � max (� ) �
�
�h(� n

b (�; x )) � h(� d
b (�; x ))

�
� :

By Lipschitz continuity of the constraint functionh

jh(� n
b (�; x )) � h(� d

b (�; x )) j

� L h



 � n

b (�; x ) � � d
b (�; x )



 � L h � max (� );

we obtainh(� d
b (�; x )) � 0 for anyx 2 CI . Similar logic can

be applied to the constraint on the reachability of the backup
set. For anyx 2 CI , the nominal backup trajectory fromx
satis�es hb (� n

b (T; x )) � � b � L hb � max (T), and we have

jhb (� n
b (T; x )) � hb (� d

b (T; x )) j � L hb � max (T):

These guarantee thathb (� d
b (T; x )) � 0. Thus, all the

functions which de�neCD are nonnegative, meaning that
x 2 CD for all x 2 CI , and soCI � C D . �

Lemma 1 assumes that a time-varying bound on the deviation
between the nominal and disturbed backup �ow,� max (� ), can
be found. While problem-speci�c bounds can be obtained, we
utilize a generalization of the Gronwall-Bellman inequality
to obtain a bound for a wide class of nonlinear systems.

Lemma 2 (Theorem 2.5 in [26]). For systems(4) and (10),
let f cl be locally Lipschitz onX with Lipschitz constantL cl

and dx be piecewise continuous in� on [0; T]. If kdx k � �
for all dx and some� > 0, then for all � 2 [0; T] one has



 � n

b (�; x ) � � d
b (�; x )



 �

�
L cl

(eL cl � � 1) , � max (� ):

Remark 1. Backup strategies often drive the system to an
equilibrium and thus may be (at least weakly) contracting.
When contraction bounds on the deviation between the dis-
turbed and nominal backup �ow can be obtained,� max (� )
can be made less conservative, and it will converge to a near-
constant value asT increases. Details on such bounds can
be found in [28, Corollary 3.17]. A contraction bound is used
effectively in the spacecraft rotation example in Section IV-B.
For linear systems, �ow deviation bounds can be even tighter.

Using the de�nition of CD and the corresponding robust
backup controlleru b , we now examine the properties ofCD .

Lemma 3. The setCD is controlled invariant, and the robust
backup controlleru b rendersCD forward invariant along(9),
such that

x 2 CD =) � d
b (#; x ) 2 CD ; 8# � 0: (14)



Proof. From the de�nition ofCD and with Assumption 1

x 2 CD =) � d
b (�; x ) 2 CB � C S; 8� � T: (15)

By de�nition, the �ow is recursive in nature and thus for
any x 2 Rn and �; # � 0, � d

b (� + #; x ) = � d
b (�; � d

b (#; x )) .
Using (15) and the recursive property of the �ow

x 2 CD =) � d
b (T; � d

b (#; x )) 2 CB ; 8# � 0: (16)

From (15) and by de�nition (11)x 2 CD =) � d
b (�; x ) 2

CS; 8� � 0. Using the recursive property once more

x 2 CD =) � d
b (�; � d

b (#; x )) 2 CS; 8� 2 [0; T]; 8# � 0: (17)

De�nition (11) with (16) and (17) completes the proof.�

While the controlled invariance ofCD has been established,
the conditions onu for forward invariance cannot yet be ob-
tained asCD itself is unknown. This motivates the following
theorems.

Theorem 2. For anyx 2 CI , there exists a controlleru such
that � d(#; x ) 2 CD � C S; 8# � 0.

Proof. By Lemma 1,x 2 CI =) x 2 CD , and by Lemma 3,
u b ensures� d(#; x ) 2 CD � C S, 8# � 0. �

We are now ready to establish the conditions that enable
a controller to ensure the robust safety of (9). From the
de�nition of CI we have

_h(� n
b (�; x ); u ) � � � (h(� n

b (�; x )) � � � );
_hb (� n

b (T; x ); u ) � � � b (hb (� n
b (T; x )) � � b );

(18)

where by expanding the total derivatives for system (9) this
becomes,8� 2 [0; T];

r h(� n
b (�; x )) � n

b (�; x ) _x d � � � (h(� n
b (�; x )) � � � );

r hb (� n
b (T; x )) � n

b (T; x ) _x d � � � b (hb (� n
b (T; x )) � � b ):

(19)

Here, _x d , f (x ) + g(x )u + dx . Using this expansion, we
can show that a controller which realizes forward invariance
of CI keeps the disturbed system safe, and that conditions
for such a controller can be directly computed, despite the
unknown disturbance.

Theorem 3. If any controlleru satis�es

r h(� n
b (�; x )) � n

b (�; x )
�
f (x ) + g(x )u

�
� � �

� � (h(� n
b (�; x )) � � � );

r hb (� n
b (T; x )) � n

b (T; x )
�
f (x ) + g(x )u

�
� � b �

� � b (hb (� n
b (T; x )) � � b );

(20)

with robustness terms de�ned by

� , � kr h(� n
b (�; x )) � n

b (�; x )k ;

� b , � kr hb (� n
b (T; x )) � n

b (T; x )k ;

thenx 0 2 CI =) � d(t; x 0) 2 CI � C D � C S; for all t > 0.

Proof. As done in [5], the robustness terms� and� b upper-
bound the unknowndx term in (19). Thus the condition (20)

implies (19). From a direct application of Theorem 1 to sys-
tem (9), we obtain that (19) ensures� d(t; x 0) 2 CI , 8t > 0
for any x 0 2 CI . From Lemma 1, we haveCI � C D . �

Naturally, the original backup CBF constraints (6) are
recovered in the absence of disturbances (i.e.,� = 0 ). As
the constraints in (20) are continuous in� , the trajectory is
again discretized similar to [4, Thm. 3] and appropriately
tightened via a constant term" � where

" � �
�
2

L h ( sup
x 2CS

kf cl (x )k + � ): (21)

The result of Theorem 3 is now ready to be directly
utilized in a new point-wise optimal controller accounting
for disturbances. TheDisturbance-Robust Backup CBF (DR-
bCBF) optimization problem is written as:

u safe = argmin
u 2U

1
2

ku p � uk2 (DR-bCBF-QP)

s.t. r h(� n
b (�; x )) � n

b (�; x )
�
f (x ) + g(x )u

�
� � �

� � (h(� n
b (�; x )) � � � � " � );

r hb (� n
b (T; x )) � n

b (T; x )
�
f (x ) + g(x )u

�
� � b �

� � b (hb (� n
b (T; x )) � � b );

for all � 2 f 0; � ; : : : ; Tg. As before, � 2 R> 0 is a
discretization time step satisfyingT=� 2 N. Because� �

and � b only depend on a priori known values and� , they
can be pre-computed and reused each time (DR-bCBF-QP)
is solved. Furthermore, the robustness terms� and� b depend
on values that must be computed for the standard backup set
method already, hence disturbance robustness adds negligible
computational cost.

Remark 2. From Theorem 2,CD is controlled invariant, how-
ever the controlled invariance ofCI itself cannot be proven
without additional assumptions onu b and CB . Therefore,
the feasibility of the optimization problem(DR-bCBF-QP)is
not guaranteed. However, in the case that the optimization
problem becomes infeasible, the robust backup control law
u b can be used to stay inCD until the optimization problem
becomes feasible again.

IV. N UMERICAL EXAMPLES

In this section we demonstrate the effectiveness of the pro-
posed method in assuring safety under bounded disturbances
using two simulation examples. Code and videos are available
at: https://github.com/davidvwijk/DR-bCBF.

A. Double Integrator

Consider a simple example of a double integrator given by

_x =
�
x2; u

� T
+ dx ; (22)

with a state vectorx = [ x1; x2]T 2 R2 where x1 is
the position andx2 is the velocity, and an acceleration
control variableu 2 U = [ � 1; 1]. The safe set is de�ned as
CS , f x 2 R2 : � x1 � 0g. The unknown additive process
disturbance is bounded withkdx k � � 2 R> 0. In this
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