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Abstract— Leveraging connectivity for controlling connected
automated vehicles (CAVs) has great potential for improving
the safety and efficiency of transportation. In this paper, we
study the safety of connected cruise control (CCC), wherein
CAVs respond to multiple preceding vehicles via vehicle-to-
everything (V2X) connectivity. Using control barrier function
theory, we analyze how connectivity to vehicles farther ahead
can be leveraged to improve the CAV’s safety, and we propose
safety-critical CCC by minimally modifying efficient but not
always safe CCC designs. We use simulations to evaluate the
proposed safety-critical CCC with respect to safety, energy
efficiency and string stability. We also study mixed traffic, and
show that increasing the penetration of CAVs can significantly
improve safety and performance of road transportation systems.

I. INTRODUCTION
Vehicle-to-everything (V2X) communication offers bene-

fits for the control of connected automated vehicles (CAVs)
in terms of safety, fuel efficiency, and driving behavior. Using
connectivity, CAVs can get information from and respond to
other connected road participants, which may significantly
improve their performance. For example, connectivity en-
ables CAVs to exchange information with other connected
vehicles ahead of them, and use this information in on-
board controllers such as connected cruise control (CCC)
[1]. Effectively designed CAV controllers have demonstrated
a variety of benefits, including better fuel economy [2] and
traffic congestion mitigation [3], [4].

A primary focus when deploying CAVs is safety. Recent
works have focused on safety-critical control for CAVs.
Existing approaches include reachability analysis [5], formal
methods [6], and model predictive control [7]. Furthermore,
control barrier functions (CBFs) have shown notable success
in control synthesis because of their high adaptability to
existing control frameworks. CBFs have been applied in
adaptive cruise control [8], lane changing [9], traffic con-
trol by CAVs [10] and experiments [11]. Safe CCC was
established by CBFs in [12], which was followed by a
detailed analysis in [13] and experiments using a heavy-
duty truck in [14]. However, these works only considered
cases where the CAV responds to the immediate preceding
vehicle, lacking investigation on the relationship between
connectivity architecture and safety.
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Fig. 1. (a) Connected cruise control (CCC) where a connected automated
vehicle (CAV) responds to a human-driven vehicle (HV) and a connected
human-driven vehicle (CHV). (b)-(c) Behavior of CCC with unsafe choice
of controller parameters (teal), and the proposed safety-critical CCC that
involves active interventions by a safety filter (orange).

In this paper, we analyze how connectivity between the
CAV and vehicles farther ahead affects the safety of existing
CCC laws and provide safe choices of CCC parameters.
We show that tuning existing CCC laws to always maintain
safety becomes more challenging or even impossible as the
CAV connects to vehicles farther ahead, making it difficult to
exploit the full potential of connectivity to improve perfor-
mance. Meanwhile, existing high-performance CCC designs
may not be safe in all scenarios. To remedy this trade-
off, we propose safety-critical CCC that minimally modifies
existing, efficient but potentially unsafe CCC designs to
guarantee safety, see Fig. 1. By intervening only when there
is danger, the proposed controller achieves the best of both
worlds: safe behavior and high performance.

The rest of this paper is organized as follows. In Section II,
we establish longitudinal car-following models and introduce
CCC. In Section III, we first revisit the CBF theory, then we
provide guideline for safe nominal CCC design and propose
safety-critical CCC. In Section IV, we simulate the proposed
controller in mixed traffic. Finally, we conclude our results
and propose future directions in Section V.

II. CONNECTED CRUISE CONTROL

Consider the scenario in Fig. 1(a), where a connected
automated vehicle (CAV) follows a chain of human-driven
vehicles (HVs) while responding to a connected human-
driven vehicle (CHV) that is n vehicles ahead. We assume
that the CAV measures its own speed vi, the preceding
HV’s speed vi+1 and the distance Di via on-board range
sensors, while it acquires the CHV’s speed vi+n via vehicle-



to-everything (V2X) connectivity.
We model the HVs’ dynamics by:

Ḋi+j(t) = vi+j+1(t)− vi+j(t),

v̇i+j(t) = ui+j(t− τ), ∀j∈{1, . . . , n− 1},
(1)

where the delay τ captures the driver reaction time and
powertrain delays and the car-following behavior is modeled
by the optimal velocity model (OVM) [15]:

ui+j = Ah

(
Vh(Di+j)− vi+j

)
+Bh

(
vi+j+1 − vi+j

)
. (2)

That is, the HV responds to the speed difference using gain
Bh and to the distance using gain Ah and the range policy:

Vh(D) = min{κh(D −Dst), vmax}. (3)

This range policy prescribes a desired speed as a function of
the distance, which is zero at the standstill distance Dst and
increases linearly up to speed limit vmax with gradient κh.

We model the CAV’s dynamics by:

Ḋi(t) = vi+1(t)− vi(t),

v̇i(t) = ui(t),
(4)

and the CAV’s state is denoted as x = [Di vi]
⊤. To reduce

the complexity of the control design, we neglect the input
delays [16] and input constraints [17]. We choose the desired
controller ui = kd(x), to be the connected cruise control
(CCC) strategy given in [1] and experimentally tested in [18]:

kd(x) = A
(
V (Di)− vi

)
+B1

(
W (vi+1)− vi

)
+Bn

(
W (vi+n)− vi

)
,

(5)

which responds to the distance and speed difference with
gains A and B1 like the OVM (2), and also to the CHV’s
speed with gain Bn. It uses the range policy V and the speed
policy W to prevent the CAV from exceeding the speed limit:

V (D) = min{κ(D −Dst), vmax},
W (v) = min{v, vmax}.

(6)

III. SAFE CONNECTED CRUISE CONTROL

In this section, we firstly revisit the theory of control
barrier functions. Then, we analyze the safety of CCC (5)
and propose a safety-critical CCC law based on this theory.

A. Background on Control Barrier Functions

Consider control systems with state x ∈ Rn, input
u ∈ Rm, and dynamics given by locally Lipschitz continuous
functions f : Rn → Rn and g : Rn → Rn×m:

ẋ = f(x) + g(x)u. (7)

A locally Lipschitz continuous controller k : Rn → Rm,
u = k(x) leads to the closed-loop system:

ẋ = f(x) + g(x)k(x), (8)

whose solution is x(t) for initial condition x(0) = x0 ∈ Rn.
The safety of system (8) is captured by a safe set S, that is

given by a continuously differentiable function h : Rn → R:

S = {x ∈ Rn : h(x) ≥ 0} . (9)

System (8) is safe w.r.t. S if x0 ∈ S =⇒ x(t) ∈ S, ∀t ≥ 0.
Nagumo’s theorem [19] establishes safety for (8).

Theorem 1 ([19]). Let h satisfy ∇h(x) ̸= 0 for all x ∈ Rn

such that h(x) = 0. System (8) is safe w.r.t. S if and only if:

ḣ
(
x, k(x)

)
≥ 0, ∀x ∈ Rn s.t. h(x) = 0, (10)

where:

ḣ
(
x, k(x)

)
= ∇h(x)

(
f(x) + g(x)k(x)

)
. (11)

While condition (10) describes the safety of (8) with
given controller, control barrier functions (CBFs) [20] enable
safety-critical controller synthesis for (7).

Definition 1 ([20]). Function h is a control barrier function
for (7) on S if there exists α ∈ Ke such that for all x ∈ S:

sup
u∈Rm

ḣ(x, u) > −α
(
h(x)

)
. (12)

Here α ∈ Ke is an extended class-K function. For simplicity,
here we choose the linear function α(r) = γr with γ > 0.

Theorem 2 ([20]). If h is a CBF for (7) on S, then any
locally Lipschitz continuous controller k that satisfies:

ḣ
(
x, k(x)

)
≥ −γh(x), (13)

for all x ∈ S renders (8) safe w.r.t. S.

CBFs are often used in safety filters that transform a
desired but not necessarily safe controller kd : Rn → Rm

into a safe controller, by using (13) in optimization:

k(x) = argmin
u∈Rm

∥u− kd(x)∥2

s.t. ḣ(x, u) ≥ −γh(x).
(14)

If the input u is scalar and ∇h(x)g(x) < 0 holds, which
will be the case for CCC (5), then (10) is equivalent to:

ks(x)− k(x) ≥ 0, ∀x ∈ Rn s.t. h(x) = 0, (15)

while (14) is equivalent to [14]:

k(x) = min{kd(x), ks(x)}, (16)

with:
ks(x) = −∇h(x)f(x) + γh(x)

∇h(x)g(x)
. (17)

Here, the safety filter intervention is influenced by the choice
of parameter γ. Smaller γ encourages earlier intervention.

B. Safe Nominal CCC Design

Now we apply CBF theory to analyze the safety of system
(4) with the nominal CCC (5), and to propose a provably safe
CCC law. As first step, we write (4) in the form of (7) with
f(x) = [vi+1 − vi 0]

⊤ and g(x) = [0 1]⊤. Second, we select
function h to describe the safety of the CAV. Several safety
criteria were proposed in [13]. Here we use the strictest
criterion that requires the time headway Di/vi of the CAV
to be kept above a safe value Th = 1/κsf :

h(x) = κsf(Di −Dsf)− vi. (18)
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Fig. 2. Safety and stability charts of the nominal CCC (5) w.r.t. the time
headway criterion (18) in (a) (B1, A) parameter space and (b) (B1, Bn)
parameter space.

while including a safe standstill distance Dsf . This leads
to ∇h(x) = [κsf − 1] ̸= 0 and ∇h(x)g(x) = −1 < 0, thus
formulas (15) and (16) can be applied for safety analysis and
safety-critical control, respectively, where ks in (17) reads:

ks(x) = κsf(vi+1 − vi) + γ
(
κsf(Di −Dsf)− vi

)
. (19)

We study the safety of the nominal CCC (5) via Theo-
rem 1, and derive the following safe choices of (A,B1, Bn)
control gains by analyzing when condition (15) holds.

Theorem 3. System (4) with ui = kd(x) given by (5) and
A,B1, Bn ≥ 0 is safe w.r.t. S given by (9) and (18) if:

• vi ≥ 0, B1 = κsf ≥ κ, Bn = 0 and Dst ≥ Dsf ; or
• vi ≥ 0, |vi+1 − vi| ≤ v̄ and |vi+n − vi| ≤ v̄ with some

v̄ > 0, Dst > Dsf , κsf ≥ κ and:

A ≥
(
|κsf −B1|+ |Bn|

)
v̄

κ(Dst −Dsf)
. (20)

Proof. We prove safety via Theorem 1, by prov-
ing that (15) holds for k(x) = kd(x). We consider
h(x) = κsf(Di −Dsf)− vi = 0 and express ks(x)− kd(x)
by substituting (5) and (19):

ks(x)− kd(x) = κsf(vi+1 − vi)−A
(
V (Di)− vi

)
−B1

(
W (vi+1)− vi

)
−Bn

(
W (vi+n)− vi

)
. (21)

Based on (6), we use V (Di) ≤ κ(Di −Dst), W (vi) ≤ vi:

ks(x)− kd(x) ≥ κsf(vi+1 − vi)−A
(
κ(Di −Dst)− vi

)
−B1

(
vi+1 − vi

)
−Bn

(
vi+n − vi

)
. (22)

Then we add Ah(x) = 0 to both sides, which leads to:

ks(x)− kd(x) ≥ A(κsf − κ)(Di −Dsf) +Aκ(Dst −Dsf)

+ (κsf −B1)(vi+1 − vi)−Bn(vi+n − vi). (23)

Note that vi ≥ 0 implies Di −Dsf ≥ 0 for h(x) = 0. Thus,
the conditions in the first bullet point of Theorem 3 and (23)
give (15), and it proves safety. The second bullet point yields:

ks(x)−kd(x) ≥ Aκ(Dst−Dsf)−|κsf−B1|v̄−|Bn|v̄. (24)

Hence, (15) and safety follows for Dst > Dsf and (20).

Fig. 2(a) and (b) visualize condition (20) in the (B1, A)
space for various Bn and in the (B1, Bn) space for various

TABLE I
PARAMETERS OF THE NUMERICAL CASE STUDIES

Vehicle Variable Symbol Value Unit

All speed limit vmax 25 m/s
standstill distance Dst 5 m

HV
delay τ 1 s

range policy gradient κh 0.6 1/s
driver parameters (Ah, Bh) (0.1, 0.6) 1/s

CAV

range policy gradient κ 0.6 1/s
safe gains (point P) (A,B1, Bn) (0.4, 0.6, 0.03) 1/s

unsafe gains (point Q) (A,B1, Bn) (0.4, 0.6, 0.5) 1/s
safe distance Dsf 1 m

inverse time headway κsf 0.6 1/s
speed difference limit v̄ 15 m/s

CBF parameter γ 1 1/s

CHV
deceleration adec 7 m/s2

acceleration aacc 3 m/s2

speed perturbation vpert 15 m/s

A values, respectively, for the parameters in Table I. These
plots are called safety charts [12], [13], where the safe
domain (green) indicates safe choices of CCC parameters.
In Fig. 2(a), the safe region moves towards larger A values
as Bn increases, i.e., increased response to the CHV’s speed
makes it more challenging to implement provably safe gains.
In Fig. 2(b), the safe region shrinks to the point (κsf , 0)
as A decreases. The safety charts are plotted on top of
the stability charts from [1] for n = 2 in CCC (5). These
charts describe both plant stability and head-to-tail string
stability [1], [21]. The former means that vehicles are able
to approach a constant speed in an asymptotically stable
manner, and the latter indicates that speed perturbations are
attenuated as they propagate from the head to the tail vehicle
according to the transfer function of the linearized dynamics.
For gains in the string stable domain (blue), the CAV’s speed
is both asymptotically stable and has smaller fluctuations
than the CHV. Notice that in this case, the safe domain lies
inside the string stable one.

C. Safety-critical CCC

The safety chart in Fig. 2 helps us choose the parameters
of the nominal CCC (5) in a safe way. However, compared to
the string stable domain, the safe domain is small. This small
set of safe parameters may lead to undesired CCC perfor-
mance, i.e., low energy efficiency or high speed fluctuations,
as studied below. To tackle this problem, we propose to use
the safety-critical CCC given by (5),(16). This allows us to
optimize the gains of the nominal CCC (5) to achieve the
best performance, while the safety filter (16) intervenes when
it is necessary to guarantee safety.

To show this, we simulate a case where the CAV responds
to the CHV n = 2 vehicles ahead, with various controllers:

• nominal CCC (5) with safe gains (point P in Fig. 2(b)),
• nominal CCC (5) with unsafe gains (point Q),
• safety-critical CCC (5),(16) with unsafe gains (point Q).

The results are shown in Fig. 3(a)-(d) by blue, teal and orange
dashed lines, respectively, for the parameters in Table I.
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The simulation captures a scenario where the CHV per-
forms an emergency brake with deceleration adec and then
returns to its original speed with acceleration aacc, leading
to a speed perturbation of size vpert. As shown in Fig. 3(a)-
(d), using CCC, the CAV responds to both the HV and CHV,
by decelerating and then accelerating. In panels (c)-(d) we
can observe the behavior expected from the safety charts
in Fig. 2(b): the trajectory leaves the safe set with unsafe
gains Q (teal), while it stays within the safe set with safe
gains P (blue). Additionally, the safety-critical CCC (5),(16)
successfully guarantees safety even with the unsafe gains
(orange), as stated by Theorem 2.

Fig. 3(e)-(f) demonstrate the safety filter intervention by
showing the nominal CCC input (5) and safe controller input
(19), i.e., kd(x) and ks(x). For safe gains P in panel (e),
kd(x) is smaller than ks(x), which means that the safety
filter would not intervene. While for unsafe gains Q in panel
(f), the safety filter (16) intervenes when kd(x) exceeds ks(x)
and switches the input to ks(x) to guarantee safety. The
duration of safety filter intervention is denoted as Tsf,i.

Observe that the safety filter engages during acceleration
rather than deceleration; see orange curves in Fig. 3(b)
and (f). This is because the CAV matches its speed to
the CHV. When the CHV decelerates, the CAV responds

(a) (b)

(c) (d)

Safe

s si i

sJ kgi

Fig. 4. Parameter dependence of safety-critical CCC (5),(16), evaluated
by (a) safety filter intervention time Tsf,i, (b) average CBF value havg,i,
(c) energy consumption per unit mass Ei, and (d) string stability index Γ.

to it and brakes earlier than the HV. This increases the
distance and improves safety; see Fig. 3(a). However, when
the CHV accelerates after braking, the CAV starts to increase
its speed while the HV still has low speed. Although this
could endanger safety for the nominal CCC, the safety filter
intervenes to mitigate the acceleration and keep safe distance.

To study how the gains B1, Bn affect the performance and
behavior of the safety-critical CCC (5),(16), we conduct large
numbers of simulations and evaluate the following metrics:

• safety filter intervention time, Tsf,i;
• average CBF value,

havg,i =
1

T

∫ T

0

h
(
x(t)

)
dt, (25)

where T is the simulation time;
• energy consumption per unit mass [18],

Ei =

∫ T

0

vi(t)max
{
0, v̇i(t)

}
dt; (26)

• string stability index [22],

Γ=
1

N

N−1∑
k=0

Γk, Γk=
maxt≥0 |vk(t)− vk(0)|
maxt≥0 |vN (t)− vN (0)|

, (27)

where N is the number of simulated vehicles.
The safety filter intervention time evaluates how long the
CAV is in dangerous situation, while the average CBF
value describes the overall safety level of the CAV during
the whole simulation. For Γ ≤ 1, the string stability index
implies string stability (i.e., smaller velocity perturbations
than those of the CHV) for the vehicle chain on average
(which is different from head-to-tail string stability).

The simulation results are depicted in Fig. 4 for n = 2. As
shown in Fig. 4(a), the CAV requires the least safety filter
intervention for B1 near κsf and B2 near zero, which corre-
spond to the safe region in Fig. 2(b). However, considering
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where n = 3.

the overall safety during the simulation, larger B2 is pre-
ferred since it leads to higher average CBF value in Fig. 4(b).
This can be explained by Fig. 3(d). Compared to small B2

(blue), CCC with large B2 (orange) decelerates earlier and
significantly increases the CBF value. Meanwhile, large B2

yields small CBF value during acceleration, but the CBF
value is nonnegative thanks to the safety filter. Thus, more
reliance on connectivity (larger B2) considerably improves
the overall safety, especially during deceleration, but it also
needs more safety filter intervention during acceleration.

Additionally, small B1 and large B2 lead to both high
energy efficiency and string stability; see the similar trends
in Fig. 4(c)-(d). These intuitively show the trade-off between
the requirements of safety and performance. Remarkably, the
proposed safety filter allows the controller to use control
gains with good performance and it intervenes in dangerous

situations only, as shown by the simulations.

IV. SCALING UP SAFE CCC IN MIXED TRAFFIC
Now, we simulate mixed traffic flows with different pen-

etrations of CAVs executing safety-critical CCC. We con-
sider N = 24 follower vehicles, where every nth vehicle is
CAV, i.e., the setup in Fig. 1(a) is concatenated M = N/n
times, see Fig. 5. Hence, there are M CAVs with indices
i ∈ I = {0, n, 2n, . . . , (M − 1)n}. Fig. 5 illustrates simula-
tion results for n = 2, 3 and 12, with parameters in Table I.
Notice that the CAVs attenuate speed fluctuations, which
makes driving at the tail of the vehicle chain less dangerous.

Fig. 6 evaluates the safety filter intervention time of
various CAVs for n = 3. Similar to Fig. 4(a), large B1 (near
κsf ) and small B3 (near 0) requires minimal intervention,
while large B3 and small B1 needs maximal intervention.
As the speed perturbation reduces for the subsequent CAVs,
cf. Fig. 5(b), the low-intervention region with Tsf,i ≤ 0.5 s
expands towards large B3 and then to smaller B1; see
CAVs #18 and #15. Finally, the safety filters of CAVs at
the end of the chain (#12 to #0) do not intervene for most
parameter pairs, except for small (B1, B3) that cause string
instability with amplifying speed perturbations; cf. Fig. 2(b).

Another important factor affecting safety and performance
is the CAV penetration. Considering the setup of Fig. 5,
where every nth vehicle is CAV, the penetration is defined by
p = 1/n. Next, we simulate 24 vehicles with various CAV
penetrations by considering n ∈ {1, 2, 3, 4, 6, 8, 12}. Note
that for low penetrations, HVs tend to shape the overall traffic
behavior. HVs amplify speed fluctuations along the vehicle
chain for our parameters; cf. Fig. 5. To avoid exceedingly
large speed fluctuations and negative speeds, we reduced the
CHV’s speed perturbation to vpert = 12 m/s. We evaluate
the average of the previous metrics for CAVs as a function
of the penetration:

Tsf,avg=
1

M

∑
i∈I

Tsf,i, Havg=
1

M

∑
i∈I

havg,i, Eavg=
1

M

∑
i∈I

Ei.

(28)
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Fig. 7. Performance of safety-critical CCC (5),(16) versus CAV penetration:
(a) average safety filter intervention time Tsf,avg, (b) average CBF value
Havg, (c) average energy consumption per unit mass Eavg, (d) string
stability index Γ.

Fig. 7 shows the simulation results for a pair of (B1, Bn)
gains (point Q). Fig. 7(a) displays that the safety filter inter-
vention drops significantly with increasing penetration from
0 to 30%. Above 30%, the decline is less pronounced. The
average CBF value in Fig. 7(b) also decreases with the pen-
etration. These are explained similar to Fig. 3(d): as the pen-
etration decreases, CAVs match their speed with connected
vehicles farther ahead, which makes them brake earlier and
increase the CBF significantly during deceleration, while it
yields more safety filter intervention during acceleration.
Similar trends are observed for energy consumption and
string stability in Fig. 7(c)-(d). Energy efficiency improves
considerably between 0% and 30% penetration and reaches
the minimum at 33% (n = 3) for our gains. String stability
(Γ ≤ 1) requires at least 16.7% penetration (n ≤ 6).

Overall, for low CAV penetration, a slight increase of pen-
etration level significantly improves safety and performance.
CAV penetrations around 15-20% already yield small safety
filter intervention and high performance, while larger pene-
trations may not lead to considerable improvement for our
setup. Importantly, the proposed safety-critical CCC (5),(16)
provides safe CAV behavior in all cases.

V. CONCLUSIONS

In this paper, we used control barrier functions to inves-
tigate the safety of connected cruise control (CCC), where
connected automated vehicles (CAVs) respond to multiple
vehicles ahead of them. Particularly, we derived safe CCC
parameter choices via safety charts, and we proposed safety-
critical CCC to maintain safety while achieving high per-
formance. We highlighted by simulations that connectivity
to vehicles farther ahead improves the safety of CAVs
during deceleration, but it requires safety filter intervention
during acceleration. Additionally, increasing the penetration
of CAVs in mixed traffic improves safety, energy efficiency
and string stability. As future research, we plan to take the
system delay into account in safety-critical CCC.
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